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Abstract. New standard forms of the time-independent linear adiabatic wave equation of plane atmospheres are presented. The
main objective is to obtain equations with invariants as simple as possible so that oscillation theorems can be applied effectively.
By transformations of both the independent and the dependent variables, equations with simple invariants are formulated. We
present a standard form of the wave equation the invariant of which depends only on the first derivative of the equilibrium
density, as opposed to the common standard form the invariant of which depends also on second derivatives. Further, we discuss
a procedure which replaces the wave equation by a system of two simple second order differential equations. In this case we
try to draw conclusions on the general behavior of solutions by use of oscillation theorems. In addition, a re-formulation of the
wave equation is presented, which eliminates terms with first derivatives of atmospheric quantities. The independent variable
of the resulting equation depends not only on the geometrical height but also on the ratio ω/k. In this case, it is necessary to use
a diagnostic diagram the axes of which are given by ω/k and ω instead of the common k − ω diagram. Therefore we discuss
the meaning of the parameter ω/k for the representation of dispersion curves. Finally, for the VAL-atmosphere (Vernazza et al.
1981), regions of certainly nonoscillatory waves are considered.
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1. Introduction

The present paper is a continuation of a paper by Schmitz &
Fleck (1998), called Paper I, which considered vertically prop-
agating adiabatic waves in a plane atmosphere. There, com-
mon standard forms of the 1-dimensional wave equation are
discussed critically and a wave equation with a very simple in-
variant is presented. We now have performed extensions of the
strategy of Paper I to the three-dimensional propagation of lin-
ear adiabatic waves in plane atmospheres. Here, the problem
of the reformulation of the time-independent wave equation is
significantly more complex than in the one-dimensional case.

To solve the wave equation numerically, one takes a corre-
sponding system of two first order equations. In general, one
uses the two linearized hydrodynamical equations from which
the wave equation is formed. If we take appropriate dependent
variables (vertical displacement and Lagrangian pressure
perturbation), then this system is uncomplicated, and can easily
be integrated numerically.

Send offprint requests to: F. Schmitz

To obtain solutions in closed form for simple analytical
model atmospheres, the representation of the wave equation
and the choice of the variables are crucial. In that case one tries
to transform the wave equation to known second order equa-
tions, in particular equations of special functions (e.g. Schmitz
& Steffens 1999).

To understand the behavior of waves without solving the
wave equation explicitely or to interprete results of numerical
calculations, one writes the wave equation in standard form and
studies the behavior of the invariant. Besides, the standard form
is also used for a numerical integration, as there are particu-
lar numerical integration methods for so-called Schoedinger-
type equations. It is clear that a simple invariant is convenient.
Further, a simple invariant is useful in connection with approx-
imation methods of solutions as the WKB-approximation (e.g.
Mathews & Walker 1970).

Recent investigations of resonances of standing waves in
the VAL-atmosphere and modifications (cool chromosphere or
shifted transition layer) of this atmosphere by Steffens et al.
(1997) have yielded a wealth of features in the diagnostic dia-
gram. Further, investigations of the influence of atmospheric
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layers (VAL-atmosphere and modifications) on the p-modes
of the sun by Steffens (1998), and Steffens & Schmitz (2000)
have led to complicated dispersion curves. The corresponding
ridges in the diagnostic diagram show strong bending or indi-
cate avoided crossing. For the VAL-atmosphere, the frequency
range where such effects occur is 3 < ν < 7 mHz. The results
are not yet interpreted and understood.

A frequently discussed, but not commonly accepted phe-
nomenon is that of a chromospheric mode, presumably due
to an acoustic cavity between the temperature minimum and
the transition region (cf. e.g. Leibacher & Stein 1981). For a
detailed discussion refer to Steffens et al. (1985), who report
on signatures of a chromospheric mode at 6 mHz in their ob-
servations. However, Steffens & Schmitz (2000) demonstrated
that the corresponding features can appear in a k − ω diagram
even without a chromosphere, i.e. without a temperature min-
imum and a chromospheric temperature increase. It therefore
does not necessarily require invoking a chromospheric mode to
explain these features. Further, their results show that, in order
to understand the diagnostic diagram of the Sun, it is useful
to consider modifications and variations of the outer layers. It
remains open, however, how to best explain certain features in
diagnostic diagrams – by physical systems (e.g. cavities) or by
a discussion of the equations. A nice example can be found in
Aizenman et al. (1977). They have investigated the behavior of
l = 2-modes of stars “evolving away from the main sequence”.
There, in a frequency-age diagram mode bending (bumping)
similar to that in the solar ω − k diagram occurs. The authors
have shown that the bending of the ridges can be explained
by avoided crossing of the ridges of two single systems. These
systems however, are fictitious systems defined by equations
which are obtained by simplifying the full equations.

However that may be, the common standard form of the
adiabatic wave equation is not suitable to explain and under-
stand the features. Further, it is not clear which combinations
of the wave number k and the frequency ω should be taken to
understand the behavior of structures and ridges in the diagnos-
tic diagram: the pairs (k , ω) or (ω/k , ω) or (k , ω2/k) etc.?

Paper I was closed by the presentation of a simple standard
form of the equation of vertically propagating waves. In the
case of the VAL-atmosphere, the numerical behavior of the in-
variant of this equation is very simple. The three-dimensional
case is much more complicated and the optimal standard form
of the equation is not unique. Thus, in the present paper we
concentrate on the mathematical tools. A subsequent paper by
co-workers will deal with features and ridges in diagnostic di-
agrams.

The present paper is organized as follows: in Sect. 2 we
present the linearized hydrodynamic equations and the result-
ing wave equation. Section 3 deals with the common stan-
dard form of the wave equation. This form is critized in
Sect. 4 where also oscillation theorems are given. In Sect. 5,
we present and discuss some new standard forms of the wave
equations. The equation given in Sect. 5.1 is obtained by in-
troducing the logarithmic mass as the independent variable. In
Sect. 5.2 we separate the wave equation into two second order
differential equations and apply oscillation theorems to obtain
general statements on the behavior of solutions. A standard

form of the wave equation the invariant of which is free of first
derivatives of atmospheric quantities is presented in Sect. 6. In
Sect. 7 we discuss criteria for nonoscillatory waves with appli-
cations to the VAL-atmosphere.

2. Notations and the original wave equations

Let z be the vertical, outwards directed geometrical coordinate
and g the constant gravity. Let p(z) and ρ(z) be the pressure and
the density of the equilibrium atmosphere, c(z) the adiabatic
sound speed, ξ(r, t) the vertical component of the Lagrangian
displacement and ∆p(r, t) the Lagrangian pressure perturba-
tion. The horizontal position r‖ and the time t are separated
by exp[ i (ω t − k r‖)], where ω is the real frequency, and k the
horizontal wave vector.

From the linearized hydrodynamic equations we obtain two
first order differential equations (cf. e.g. Schmitz & Fleck 1994)

d
dz
ξ − g k2

ω2
ξ =

1
ω2 ρ c2

(c2k2 − ω2)∆p, (1)

d
dz
∆p + g

k2

ω2
∆p = ρ

[
ω2 − k2g2

ω2

]
ξ (2)

where now ξ = ξ(z), ∆p = ∆p(z), and k = |k|. We use the vari-
ables ξ and ∆p as only these perturbations are continuous at a
contact discontinuity where ρ and c are discontinuous. Because
of the continuity of ξ and ∆p, the coefficients of the equations
cannot contain derivatives of ρ and c. In the case of other vari-
ables as the Eulerian pressure perturbation or the Lagrangian
density perturbation the coefficients of the corresponding equa-
tions contain first order derivatives of atmospheric quantities
like c and ρ.

From Eqs. (1) and (2) we obtain the time-independent wave
equation of the Lagrangian pressure perturbation∆p:

ω2 c2

[
d2 ∆p
dz2

− 1
ρ

d ρ
d z

d∆p
d z

]

−
[

k2 g

(
g +

c2

ρ

d ρ
d z

)
+ ω2 ( c2 k2 − ω2 )

]
∆p = 0 . (3)

The Lagrangian pressure perturbation ∆p is a scalar, the verti-
cal displacement ξ a component of a vector. The corresponding
wave equation of ξ has a critical level at ω = c(z) k. Hence, it is
more complicated than the equation of ∆p.

3. The common standard form of the wave
equation

For this form (see e.g. Deubner & Gough 1984), the indepen-
dent variable is the geometrical height z. With the transforma-
tion

Ψ(z) = ρ−1/2 ∆p(z) (4)

the wave Eq. (3) turns into the standard form

d2

dz2
Ψ + Q(z) Ψ = 0 (5)
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where the invariant Q(z) is given by

Q(z) =
1
c2

(
ω2 − ω2

0

)
+ k2

(
N2

ω2
− 1

)
(6)

with

ω2
0 =

c2

4

 3
ρ2

(
dρ
dz

)2

− 2
ρ

d2ρ

dz2

 (7)

and

N2 = g

[
− 1
ρ

dρ
dz
− g

c2

]
· (8)

In the case of the isothermal atmosphere, ω0 is the constant
acoustic cut-off frequency and N the constant Brunt-Vaisala
frequency. The factorized form of the invariant Q(z) reads:

Q(z) =
ω2

c2

(
1 − ω

2
+

ω2

) (
1 − ω

2−
ω2

)
(9)

where

ω2
± =

1
2

(
k2c2 + ω2

0

)
±

√
1
4

(k2c2 + ω2
0)2 − N2k2c2 (10)

(cf. Deubner & Gough 1984).
The standard form given here is the most common.

Occasionally, other forms of the wave equation are used.
Mihalas & Toomre (1981) used a standard form which was ob-
tained by the wave equation of the vertical displacement ξ.

4. Critique of the standard form and oscillation
theorems

The common standard form of the wave equation is not suit-
able, as it requires the calculation of the second derivative of
the density, which is nearly impossible to do in the case of an
empirical atmosphere.

The invariant used by Mihalas & Toomre (1981) contains
the second derivative of the adiabatic sound speed (compara-
ble to the second derivative of the density in Eq. (7)). The au-
thors write: “however, it was found to be essential to smooth
the model in order to obtain continuos derivatives of the sound
speed and density scale height. Otherwise small scale fluctua-
tions in the vertical wave number produce numerous partial re-
flections which are artifacts of the model and have no physical
basis”. Numerical differentiation is usually a difficult operation,
particularly in the case of empirical data. In Paper I we calcu-
lated the second derivative of the adiabatic sound speed of the
VAL-atmosphere. There, small deviations from the VAL-data
strongly influenced the second derivative.

Besides, the numerical behavior of the invariant is far too
complicated to draw conclusions to the form of the solutions.
In Paper I we have extensively discussed this problem for the
vertical case k = 0. The so-called invariant of a second or-
der differential equation is not a physical invariant, i.e. a scalar
field, but it changes when the variables are transformed. In
Paper I we have compared some different representations of the
wave equation. We have seen how the invariants undergo strong

changes when the variables are transformed. It was shown that
the behavior of waves can be described by a wave equation,
the invariant of which contains only one coefficient, which is
the quantity p/ρ c. In the VAL atmosphere, and there in partic-
ular in the chromosphere, the behavior of this quantity differs
markedly from the behavior of the temperature or the adiabatic
sound speed.

An uncomplicated and computationally simple invariant
plays a role also in the following case: for a numerical inte-
gration, a differential equation of higher order is replaced by
a system of first order equations. There is an exception to this
rule. For the numerical integration of second order differen-
tial equations whithout the first derivative, there are particular
methods. Mihalas & Toomre (1981) have used such a method
to solve the wave equation.

Oscillation and nonoscillation theorems for second order
equations are given in Gradshteyn & Ryzhik (1980). Only a few
oscillation theorems for the solutions of second order differen-
tial equations are really useful. Most of such theorems concern
infinite intervals. (Mathematically, solutions are said to be os-
cillatory if they possess an infinite number of zeros in the inter-
val [a,∞), nonoscillatory, if they possess only a finite number
of zeros.)

For this paper, we need only the following two nonoscillat-
ing theorems for a differential equation y′′ + f (x) y = 0:
1. If f ≤ 0 on an interval (a, b) or on (−∞,+∞), then y(x) has
not more than one zero in this interval. In this paper, we call
this case nonoscillatory.
2. There are strictly increasing and decreasing linearly indepen-
dent positive solutions if f < 0 is continuous in (−∞,+∞) and
if x f (x) is not integrable on (0,∞). This property corresponds
to the existence of the solutions e−x and e+x of the equation
y′′ −y = 0 where only these solutions, apart of constant factors,
are strictly monotonous and positive as opposed to the solutions
sinh x or cosh x. As we shall consider atmospheric layers with
finite extension the integrability of the function x f (x) is unim-
portant. For f < 0 we can always find a monotonic and positive
solution.

When the invariant is negative, the solutions are nonoscilla-
tory. This statement is sufficient, but not necessary. So, f (x) = 0
does not separate exponential and oscillatory behavior as it is
often claimed. Only criteria for certainly nonoscillatory behav-
ior can be given.

5. Different forms of the wave equation

Using the column mass m given by

m =

∞∫
z

ρ(z) d z or dm = − ρ d z, (11)

we obtain:

d2 ∆p
dz2

− 1
ρ

d ρ
d z

d∆p
d z

= ρ2 d2 ∆p
d m2

· (12)

Then, the wave Eq. (3) reads:

d2∆p
dm2

+
1

ω2c2ρ2

[
k2g(c2 d ρ

d m
− g) + ω2(ω2− c2k2)

]
∆p = 0. (13)
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For

k2g (c2 d ρ
d m
− g) + ω2 (ω2 − c2k2) < 0 (14)

solutions are certainly nonoscillatory. This condition, however,
is weak: in the case of an isentropic stratification it reduces to
ω < c k, in the case k = 0 to ω2 < 0.

It is not of advantage to replace the density ρ by the temper-
ature T , as ρ(m) increases monotonously, whereas T (m) is not
monotonous. Because of the Schwarzschild criterion for con-
vective stability,

d p
d ρ

∣∣∣∣
star
<

d p
d ρ

∣∣∣∣
adiabatic

= c2 (15)

and because of p = m g, we have

c2 d ρ
d m
− g > 0, (16)

so that the corresponding term of the invariant of the wave
Eq. (13) is positive. For k = 0, the wave equation reduces to:

d2

dm2
∆p +

ω2

c2ρ2
∆p = 0. (17)

As regards the representation of the propagation characteris-
tics of a wave, the mass is a somewhat disadvantegeous coor-
dinate. A wave equation which in the case of the isothermal
atmosphere reduces to a differential equation with constant co-
efficients is more familiar. So instead of the mass we should
use a geometrical coordinate. First, however, we present a more
general form of the wave equation.

We define a new independent variable x by

d m = − u2(x) dx (18)

with arbitrary u(x). The coordinate x is outwards directed. By
this transformation, we obtain an equation which contains the
first derivative of ∆p. To eliminate this derivative, we have
to put

∆p = u(x) v(x) (19)

with v(x) as a new dependent variable. We obtain

d2∆p
dm2

=
1
u3

d2v

dx2
+

d2u
dm2
v, (20)

so that the wave Eq. (13) takes the form

d2v

dx2
+ v u3 d2u

dm2
+

u4

ω2 c2 ρ2

×
[
k2 g

(
c2 d ρ

d m
− g

)
+ ω2 (ω2 − c2k2)

]
v = 0. (21)

Here, the function u(m) is arbitrary. In the following sections
we try to choose the function u(m) so that the differential equa-
tion simplifies. We discuss two possibilities: we set u(m) or we
define u(m) by a linear second order differential equation.

5.1. Introduction of a quasi-geometrical coordinate

We proceed as in the case k = 0 in Paper I. Let H be an arbitrary
scale height. Putting

u(m) =
√

m/H, (22)

we obtain

u3 d2u
dm2

= − 1
4H2
· (23)

Further, we get

d x = −H
d m
m

or x = −H log
(

m
m0

)
, (24)

so that the coordinate x has the dimension of a length. Finally,
we obtain the equation

d2v

dx2
+

1
H2

[
p2

g2 ω2 c2 ρ2
·

(
k2 g

(
c2 d ρ

d m
− g

)
+ ω2 (ω2 − c2 k2)

)
− 1

4

]
v = 0, (25)

where we have put m = p/g. For k = 0, this equation reduces
to the equation recommended in Paper I as the basic equation
of vertically propagating waves:

d2v

dx2
+

1
H2

[
ω2 p2

g2 c2 ρ2
− 1

4

]
v = 0. (26)

By Eqs. (24), we have introduced a quasi-geometrical coor-
dinate x. The dependent variable becomes v = ∆p/

√
p. For

constant adiabatic sound speed c, Eq. (25) reduces to the
usual wave equation of the isothermal atmosphere and x be-
comes the real geometrical coordinate z. As p = mg and
m = m0 exp(−x/H) the pressure perturbation is given by

∆p(x) = exp(− x/2H) v(x). (27)

When

ω4 − c2 k2 ω2 − 1
4
g2ω2c2ρ2

p2
+ k2g

(
c2 d ρ

d m
− g

)
< 0, (28)

the solutions v(x) of Eq. (25) are certainly nonoscillatory.

5.2. Definition of the function u(m) by a differential
equation

We put

d2u
dm2
− F(m) u = 0 (29)

where F(m) must be a positive function which is composed of
parts of the third term of Eq. (21). Then, the solutions u(m) of
Eq. (29) are nonoscillatory functions. Corresponding to theo-
rem 2 of Sect. 4 there exists a monotonous positive solution.
Let u0(m) be such a solution. Then, integration of

dx
dm
= − 1

u2
0(m)

(30)
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yields a monotonous function x(m). Finally, we obtain a
monotonous positive function u0(x). As the function F(m) con-
tains parts of the third term of Eq. (21), this equation simplifies.

We consider only two cases. First, we put

d2u
dm2
− 1

c2 ρ2

(
k2 g2

ω2
− ω2

)
u = 0. (31)

In this case, the solutions u(m) are certainly nonoscillatory only
forω2 < g k so that this case applies to gravity waves. Let u0(m)
be a positive monotonous solution. Then, also u0(x) is positive
and monotonous. The wave Eq. (21) reduces to:

d2v

dx2
+

u4
0 k2

ρ2 ω2

[
g

d ρ
d m
− ω2

]
v = 0. (32)

The invariant of this equation is negative for g d ρ
d m < ω

2, and
hence, the solutions v(x) are certainly nonoscillatory if

k g > ω2 > g
d ρ
d m
· (33)

This condition holds for extremely high values of k, and is
therefore unimportant. For c→ ∞, a trivial solution of Eq. (31)
is u = 1. For u = u0 = 1, Eq. (32) becomes

d2v

dm2
+

k2

ρ2 ω2

[
g

d ρ
d m
− ω2

]
v = 0 with v = ∆p. (34)

This is the wave equation of the so-called “heterogeneous in-
compressible model” (Ledoux & Walraven 1958) in the plane
layer approximation. By this model, gravity waves are de-
scribed approximately, acoustic waves are suppressed. Hence,
the function u0(x) describes deviations of incompressibility. It
is evident, that the form of the invariant of Eq. (32) is relativly
simple. Hence, for gravity waves with ω2 < g k no particu-
lar effects should occur. In fact, the ridges of gravity modes of
the sun (Cowling’s and plane layer approximation, Steffens &
Schmitz 2000) show no particular features.

More important than gravity waves are acoustic waves. In
this case, we put

d2u
dm2
+

k2

ρ2 ω2

[
g

d ρ
d m
− ω2

]
u = 0. (35)

The solutions u(m) of this equation are nonoscillatory for

ω2 > g
d ρ
d m
· (36)

From the maximum of dρ/dm shown in Fig. 1 we can infer that
this condition is fulfilled for frequencies ν > 9 mHz, i.e. above
the range 3<ν<7 mHz, mentioned in the introduction. There is
a monotonic solution u0(m) and hence a function u0(x), which
is monotonic and positive. For v(x) we obtain the equation

d2v

dx2
+

u4
0

c2 ρ2

(
ω2 − k2 g2

ω2

)
v = 0. (37)

The solution v(x) is certainly nonoscillatory for ω2 < g k,
so that we again obtain the condition (33). The invariant of
Eq. (37) is simple. For sound waves where ω2 > k g it does
not change the sign. Hence we may infer that no pecularities

will occur for frequencies ν > 9 mHz. Results of the investiga-
tions of Steffens & Schmitz (2000) and of Steffens et al. (1997)
confirm this conclusion.

Therefore, for a given atmospheric stratification, only
waves with frequencies

g
d ρ
d m
> ω2 > k g (38)

should show striking features. In this frequency range, it is
not possible to separate Eq. (21) conveniently. Thus, to discuss
acoustic waves with 3 < ν < 7 mHz we have to use Eq. (25).
However, there is another possibility.

6. A further representation of the wave equation

In the following we combine Eqs. (1) und (2) to a wave equa-
tion the invariant of which does not contain the derivative of
the density. As the coefficients of these equations are free of
derivatives, such a procedure should be possible. We found that
only one way is practicable. We may assume that 0 < z < ∞.
By the transformations of the displacement and the pressure
perturbation

ξ(z) = eg (k/ω)2 z u(z) (39)

∆p(z) = e−g (k/ω)2 z v(z) (40)

we obtain the equations

du
dz
=

1
ω2 ρ c2

(k2 c2 − ω2) e−2 g (k/ω)2 z v, (41)

dv
dz
=

(
ω2 − k2g2

ω2

)
ρ(z) e2 g (k/ω)2 z u, (42)

for continuous functions u(z) und v(z). Now we introduce a new
independent variable y by

y =

z∫
0

ρ(z) e2 g (k/ω)2 z d z. (43)

The ratio k/ω is assumed to be given. The physical dimension
of the variable y is that of a column mass. As the integrand
is positiv, the function y(z) increases monotonously with z.
Therefore, also the inverse z(y) is a monotonous function. The
above differential equations read:

du
dy
=

1
ω2 ρ2 c2

(k2 c2 − ω2) e−4 g (k/ω)2 z v, (44)

dv
dy
=

(
ω2 − k2g2

ω2

)
u. (45)

Eliminating u(y), we obtain the second-order equation

d2v

dy2
+ I(y) v = 0, (46)

with the invariant

I(y) = (ω4−k2g2) (ω2−k2c2)
e−4 g (k/ω)2 z

ω4 ρ2 c2
, (47)
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where z = z(y). The function z(y) can be obtained by a differ-
ential equation which corresponds to the integral (43). For

√
k g > ω > c k or c k > ω >

√
k g (48)

solutions are certainly nonoscillatory.
In the vertical case with k = 0, the integral (43) reduces to

y =

z∫
0

ρ(z) d z = M − m, (49)

where M is the total mass of the layer and m the comple-
ment (11). Then, the invariant is I = ω2/ρ2c2, so that Eq. (46)
reduces to Eq. (17) if k = 0. We shall now transform Eq. (46)
by introducing a new independent variable. The strategy is to
obtain Eq. (26) when k = 0 and, in the limit of a constant sound
speed, the wave equation of the isothermal atmosphere.

First, we introduce a new dependent variable w and an new
coordinate x by

v = w
√
η (50)

and

d y = η(x) d x. (51)

With these transformations, Eq. (46) reads:

d2w

dx2
+ J(x) w + I(x) η2(x) w = 0, (52)

with

J(x) =
1
2

1
η

d2η

dx2
− 3

4
1
η2

(
dη
dx

)2

· (53)

In principle, the form of η(x) is free. However, J(x) should be
a simple function. Now, if η(x) is an exponential, J becomes
constant. For this reason, we put

η(x) = ρ0 eκ x (54)

where ρ0 is a constant density and

κ = 2 g
(

k
ω

)2

− 1
H
· (55)

Then, we have

dy = ρ0 eκ x dx. (56)

We obtain

J = − 1
4
κ2. (57)

Finally, Eq. (52) reduces to

d2w

dx2
+ Q(x) w = 0 (58)

with the invariant

Q(x) =
ρ2

0

ρ2c2

(
ω2 − k2

ω2
g2

) (
1 − k2

ω2
c2

)
·

e−2 x/H+4 g (k/ω)2 (x−z) − 1
4
κ2 (59)

with ρ(x), c(x), and z(x). The independent variable x has the
physical dimension of a length. Hence, it is a quasi-geometrical
coordinate. We can obtain the function z(x) by the numerical in-
tegration of the simple and uncomplicated differential equation

dz
dx
=
ρ0

ρ(z)
e−2 g (k/ω)2 z eκ x. (60)

It depends on the ratio k/ω.
In the case of the isothermal atmosphere we have:

x = z, ρ(z) = ρ0 e−z/H, c(z) = c0, H =
γ g

c2
0

, (61)

where γ is the adiabatic exponent. In this case, the invariant
(59) becomes constant:

Q =
(ω4 − k2g2)

ω4 c2
0

(ω2 − k2c2
0) −

(
1

2H
− g k2

ω2

)2

. (62)

This invariant yields the familiar dispersion relation of the
isothermal atmosphere.

Finally, for k = 0 the wave equation reduces to Eq. (26), the
equation recommended in Paper I. The pressure perturbation is
given by

∆p(x) = e−x/2H+g (k/ω)2 (x−z) w(x). (63)

Usually, corresponding to the axes k and ω of the familiar diag-
nostic diagram, one discusses how solutions of the wave equa-
tion depend on the frequency ω for given k. In the case of the
wave Eq. (58), however, the parameterω/k takes the place of k.
This is a little inconvenient. However, ω/k is a physical quan-
tity, the phase velocity. Further, for the ridges of solar p-modes,
Duvall (1982) found empirically, that 1/ω is a simple function
of ω/k alone (Duvall’s law, see also Deubner & Gough 1984,
Fig. 3). Also the dispersion curves of the modes of a polytropic
layer (a convection zone without an overlaying atmosphere)
can be written in the form (Lamb 1932):

1
ω
=
ω

k
1
g

f (n, γ, j), (64)

where f is an algebraic function of the polytropic index n,
the adiabatic exponent γ, and the vertical wave number j =
0, 1, 2, ...

Schmitz & Steffens (1999) have calculated the modes of
an asymptotically polytropic convection zone with a smoothly
matched, asymptotically isothermal atmosphere. In the case
of an asymptotically isentropic stratification of the convection
zone (i.e. γ = 1 + 1/n) the frequency of the p1-mode is given
by a quadratic equation for ω2:

ω4 − (2γ − 1) g kω2 + 4 (γ − 1) c2
0 g k3 = 0, (65)
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Fig. 1. The adiabatic sound speed and the derivative of the density as
functions of the height z.

where c0 is the asymptotic, adiabatic sound speed of the atmo-
sphere. We can reduce this equation to the simple form

1
ω
=

(
ω

k

)3
[ (
ω

k

)2
g (2γ − 1) − 4 (γ − 1) c2

0 g

]−1

. (66)

Also for the other p-modes, the relation ω(ω/k) is simpler than
the relationω(k). These findings are in agreement with Duvall’s
law. We thus think that the use of ω/k instead of k as a param-
eter of the invariant Q(x) and the geometrical coordinate z(x)
makes sense.

7. Regions of certainly nonoscillatory waves
We now give inequalities which hold for realistic frequencies
and wave numbers. In regions, where these inequalities hold,
waves are certainly nonoscillatory. In Sect. 6, we obtained:√

k g > ω > c k or c k > ω >
√

k g. (67)

These conditions, however, are weak as they define only small
regions of the diagnostic diagram. The condition given in
Sect. 5.1 is more important:

ω4 − ω2 ( c2 k2 + ω2
0 ) + k2 g

(
c2 d ρ

d m
− g

)
< 0· (68)

with

ω0 =
g c ρ
2 p
· (69)

The curves ω(k, z) given by the square-roots of ω2 =

1
2

(c2k2 + ω2
0

)
±

[(
c2 k2 + ω2

0

)2 − 4k2g

(
c2 d ρ

d m
− g

)]1/2 (70)

define regions with certainly nonoscillatory waves.
Let us now consider the VAL-atmosphere (Vernazza et al.

1981). We take the temperature stratification T (z) and the pres-
sure p(z) of this atmosphere. We calculate the density ρ(z) and
the adiabatic sound speed c(z) including dissociation and ion-
ization of hydrogen and ionization of helium: H2, H, H+, He,
He+, He++, e−. We have used the LTE-code described by Wolf
(1983). The calculated densities coincide with the tabulated

densities of the VAL-atmosphere. Only in the upper chromo-
sphere (z > 1500 km) there are deviations, because of the
NLTE-effects of the VAL-atmosphere. We therefore may as-
sume that also the calculated adiabatic sound speed is correct.
In the paper of Steffens & Schmitz (2000), the VAL- atmo-
sphere was matched to the convection zone of Spruit (1977).
There an equidistant data set was generated from the tabulated
points of the convection zone and the VAL-atmosphere. This
set, which was used to interpolate the coefficients of Eqs. (1)
and (2) for the numerical integration, is not suitable to cal-
culate the derivative of the density. We have therefore calcu-
lated the derivative of the density at the tabulated points of the
VAL-atmosphere using a simple second order formula for non-
equidistant points. Figure 1 shows the adiabatic sound speed
and the derivative of the density as functions of the geometri-
cal height. At the four lowest points of the VAL-atmosphere,
the stratification is superadiabatic so that Eq. (70) yields com-
plex frequencies. Also the HSRA-atmosphere (Gingerich et al.
1971) has this property, and even a density inversion. In the
following we omit the first four points of the VAL-atmosphere.

For different wave numbers k, we now consider frequen-
cies with certainly nonoscillatory solutions. Figure 2 shows
boundary curves ν(z) = ω(z)/2 π defined by Eq. (70) for
k = 0, 1, 2, 2.485, and 3. In the range 2.485 < k < 7.6085,
where the regions are not connected, instead of the inequal-
ity (68) the inequalities (67) can be used. Therefore, the figures
show the atmospheric f -mode with ω2 = g k and the so called
“Lamb-mode” ω(z) = k c(z), denoted by f and L. In the limit
k → ∞ we have:√
g

c2

(
c2 d ρ

d m
− g

)
< ω < c k. (71)

This result is familiar: for the isothermal atmosphere, the
square-root reduces to the constant Brunt-Vaisala-frequency.
Between the Lamb-mode and the Brunt-Vaisala-frequency,
waves are evanescent. As theorem 1 of Sect. 4 is only suffi-
cient, the complementary regions of Fig. 2 may contain solu-
tions with both oscillatory or nonoscillatory behavior.

8. Conclusions
Studies of the propagation behavior of linear adiabatic waves
in empirical or theoretical model atmospheres usually com-
prise two steps: the numerical integration of the wave equation
and the interpretation of the results. The first order Eqs. (1)
and (2) are well suited for numerical integration. They are sim-
ple and the coefficients can be calculated without complica-
tions. However, to understand the results and get a deeper in-
sight into the underlying physical effects, it is necessary to use a
standard form of the wave equation. For standard forms, oscil-
lation theorems and comparison theorems are powerful tools.

The invariant of the common standard form of the 3-
dimensional wave equation of plane atmospheres, given in
Sect. 3 depends on second derivatives. This makes the wave
equation too complicated for heuristic or interpretative studies.
Even first derivatives of atmospheric quantities in the invariant
can cause complications. It is for these reasons that we have
sought suitable transformations that yield new standard forms
of the wave equation with simple invariants.
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Fig. 2. The VAL-atmosphere: regions with certainly nonoscillatory
waves. The solid curves limit the regions where Eq. (68) holds. The
dotted curves are the f-mode and the “Lamb-mode” and limit the
regions given by Eqs. (67).

The standard form (25) is still conventional. It offers the ad-
vantage that the independent variable, the logarithmic mass, is
a very simple quantity. The invariant of this equation contains
only the first derivative of the density, which makes this equa-
tion superior to previous standard forms of the wave equation.

In Sect. 5.2 we have adopted an unconventional approach
and have replaced the wave equation by a non-linearly coupled
system of two linear second order differential equations. The
behavior of the invariants of these equations indicates an un-
complicated behavior of high frequency acoustic waves and of
gravity waves. It is worth pointing out, that, for the latter, this
includes the whole range ω2 < g k of gravity waves.

In Sect. 6, by some unconventional transformations, we
were able to find a wave equation the invariant of which does
not even contain the first derivative of the density. The disad-
vantage of this wave equation, however, is that the indepen-
dent variable is no longer a function only of the geometrical
height, but also a function of the parameter ω/k. One thus has
to discuss the invariant for a given ω/k. We have therefore
given some arguments for such a procedure which are related
to Duvall’s law. Like the wave equation given in Sect. 5.1, this
wave equation, too, offers the advantage that, in the isothermal
case, it reduces directly to the familiar wave equation of the
isothermal atmosphere.

The invariant of the wave equation presented in Sect. 5.1
defines z−ω−k regions with certainly nonoscillatory solutions.
For selected values of the horizontal wave number k we have
presented such regions in the z − ω plane.

A future paper will address specific features in the diagnos-
tic diagram such as the p-mode ridges. We also hope that future
studies in this area will clarify which of the two wave equations
is the most effective.
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